Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
G3 (Bethesda) ; 14(3)2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38124484

RESUMO

In this study, we aimed to systematically assess the frequency at which potentially deleterious phenotypes appear in natural populations of the outcrossing model plant Arabidopsis arenosa, and to establish their underlying genetics. For this purpose, we collected seeds from wild A. arenosa populations and screened over 2,500 plants for unusual phenotypes in the greenhouse. We repeatedly found plants with obvious phenotypic defects, such as small stature and necrotic or chlorotic leaves, among first-generation progeny of wild A. arenosa plants. Such abnormal plants were present in about 10% of maternal sibships, with multiple plants with similar phenotypes in each of these sibships, pointing to a genetic basis of the observed defects. A combination of transcriptome profiling, linkage mapping and genome-wide runs of homozygosity patterns using a newly assembled reference genome indicated a range of underlying genetic architectures associated with phenotypic abnormalities. This included evidence for homozygosity of certain genomic regions, consistent with alleles that are identical by descent being responsible for these defects. Our observations suggest that deleterious alleles with different genetic architectures are segregating at appreciable frequencies in wild A. arenosa populations.


Assuntos
Arabidopsis , Arabidopsis/genética , Fenótipo , Mapeamento Cromossômico , Sementes
2.
Plant J ; 103(4): 1516-1524, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32436321

RESUMO

The APETALA2 (AP2) subfamily of transcription factors are key regulators of angiosperm root, shoot, flower and embryo development. The broad diversity of anatomical and morphological structures is potentially associated with the genomic dynamics of the AP2 subfamily. However, a comprehensive phylogenomic analysis of the AP2 subfamily across angiosperms is lacking. We combined phylogenetic and synteny analysis of distinct AP2 subclades in the completed genomes of 107 angiosperm species. We identified major changes in copy number variation and genomic context within subclades across lineages, and discuss how these changes may have contributed to the evolution of lineage-specific traits. Multiple AP2 subclades show highly conserved patterns of copy number and synteny across angiosperms, while others are more dynamic and show distinct lineage-specific patterns. As examples of lineage-specific morphological divergence due to AP2 subclade dynamics, we hypothesize that loss of PLETHORA1/2 in monocots correlates with the absence of taproots, whereas independent lineage-specific changes of PLETHORA4/BABY BOOM and WRINKLED1 genes in Brassicaceae and monocots point towards regulatory divergence of embryogenesis between these lineages. Additionally, copy number expansion of TOE1 and TOE3/AP2 in asterids is implicated with differential regulation of flower development. Moreover, we show that the genomic context of AP2s is in general highly specialized per angiosperm lineage. To our knowledge, this study is the first to shed light on the evolutionary divergence of the AP2 subfamily subclades across major angiosperm lineages and emphasizes the need for lineage-specific characterization of developmental networks to understand trait variability further.


Assuntos
Proteínas de Arabidopsis/genética , Sequência Conservada/genética , Proteínas de Homeodomínio/genética , Magnoliopsida/genética , Proteínas de Plantas/genética , Proteínas de Arabidopsis/fisiologia , Biodiversidade , Evolução Biológica , Proteínas de Homeodomínio/fisiologia , Magnoliopsida/fisiologia , Filogenia , Proteínas de Plantas/fisiologia , Sintenia/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...